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Abstract. We study possible saturation effects in the total cross-sections describing the interaction of
ultra-high energy neutrinos with nucleons. This analysis is performed within two approaches, i.e., within
the Golec-Biernat–Wüsthoff saturation model and within the scheme unifying the DGLAP and BFKL
dynamics incorporating non-linear screening effects which follow from the Balitzki–Kovchegov equation.
The structure functions in both approaches are constrained by HERA data. It is found that screening
effects affect the extrapolation of the neutrino–nucleon total cross-sections to ultra-high neutrino energies
Eν and reduce their magnitude by a factor equal to about 2 at Eν ∼ 1012 GeV. This reduction becomes
amplified by nuclear shadowing in the case of the neutrino–nucleus cross-sections and an approximate
estimate of this effect is performed.

1 Introduction

Ultra-high energy neutrinos are one of the components of
the spectrum of particles that reach Earth. As they inter-
act weakly with matter their propagation through inter-
stellar space is not attenuated. This is the reason why they
are unique carriers of information about distant objects
such as GRB (gamma ray bursts), AGN (active gallactic
nuclei) etc. which are most probably their sources. This
information can be studied by neutrino telescopes [1].

Attenuation of neutrinos traversing the Earth and
their detection depend upon the cross-sections describ-
ing the interaction of neutrinos with nucleons and atomic
nuclei. Ultra-high energy neutrino interactions with nu-
cleons are sensitive to the behavior of the nucleon struc-
ture functions at extremely small values of the Bjorken
parameter x and relatively large scales Q2 ∼ M2

W [2–5].
Here, as usual x = Q2/(2pq), where Q2 = −q2 with p and
q denoting the four-momentum of the nucleon and four-
momentum transfer between the leptons in the inelastic
neutrino–nucleon interaction respectively. The values of x
which can be probed can be several orders of magnitude
smaller than those which are currently accessible at HERA
[6] and, for instance for neutrino energies Eν ∼ 1012 GeV,
typical values of x which contribute to the neutrino cross-
sections can be as small as x ∼ 10−8. A reliable esti-
mate of the ultra-high energy neutrino cross-sections does
therefore require a reliable extrapolation of the structure
functions towards the region of very small values of x and
large Q2, i.e. far beyond the region which is currently ac-
cessible. Existing estimates of the neutrino cross-sections
with structure functions constrained by HERA data are
based on either a DGLAP [2,4,5] or an extended BFKL
[3] linear evolution which neglects non-linear screening ef-
fects [7–14]. Those effects are in general expected to slow

down the increase of the parton distributions and of the
cross-sections with decreasing x and to reduce their mag-
nitude. Possible implications of screening effects for the
estimate of the ultra-high energy cross-sections have re-
cently been discussed in [15–18] with somewhat conflicting
conclusions. Thus in [15,16] it has been claimed that the
screening effects should play a negligible role in the esti-
mate of the ultra-high energy neutrino cross-sections due
to the dominance of the relatively large scales Q2 ∼ M2

W .
On the contrary, results obtained in [18] seem to imply
that they may be significant and, moreover, when com-
bined with the BFKL dynamics may even lead to enhance-
ment of the cross-sections.

The purpose of this paper is to present a relatively de-
tailed and realistic estimate of the impact of the screening
effects on the cross-sections describing ultra-high energy
neutrino interactions. We perform this analysis within the
two frameworks which incorporate screening effects, i.e.
the Golec-Biernat–Wüsthoff (GBW) model [19] and the
unified BFKL/DGLAP scheme [3,20] supplemented by
the non-linear term in the corresponding evolution equa-
tions. This term will be obtained from the non-linear part
of the Balitzki–Kovchegov (BK) equation [12,13]. In both
cases the parton distributions and the resulting cross-sec-
tions will be constrained by the HERA data. The content
of our paper is as follows. In the next section we recol-
lect basic formulas describing the deep inelastic neutrino–
nucleon scattering. In Sect. 3 we discuss the description
of deep inelastic scattering within the dipole picture and
present results for neutrino cross-sections calculated
within the GBW model. Section 4 contains a formulation
of the unified BFKL/DGLAP evolution equations supple-
mented by non-linear screening effects and results for neu-
trino cross-sections calculated within this approach. Sec-
tion 5 contains a summary and our conclusions.
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Fig. 1. Deep inelastic scattering

2 Basic formulas describing the deep inelastic
neutrino scattering

Deep inelastic neutrino scattering is illustrated by the di-
agram in Fig. 1. It can proceed through W± or Z0 ex-
changes, which corresponds to charged current (CC) or
neutral current (NC) interactions respectively. The
charged current interactions correspond to the processes
ν + N → l− + X (ν̄ + N → l+ + X) with charged lep-
tons l± in the final state, while the neutral current in-
teractions correspond to the processes ν + N → ν + X
(ν̄ + N → ν̄ + X). The standard kinematical variables
describing these processes are

s = 2ME,

Q2 = −q2,
x =

Q2

2pq
,

y =
pq

ME
, (1)

where M is the nucleon mass, E denotes the neutrino en-
ergy, while p and q are the four momenta of the nucleon
and of the exchanged boson respectively. The cross-sec-
tions describing deep inelastic neutrino scattering are ex-
pressed in the following way in terms of the structure func-
tions FCC,NC

2 (x,Q2), FCC,NC
L (x,Q2) and FCC,NC

3 (x,Q2):

∂2σCC,NC
ν,ν̄

∂x∂y
=
G2

FME

π

(
M2

i

Q2 +M2
i

)2

×
[
1 + (1 − y)2

2
FCC,NC

2 (x,Q2) − y2

2
FCC,NC

L (x,Q2)

± y
(
1 − y

2

)
xFCC,NC

3 (x,Q2)
]
, (2)

where GF is the Fermi constant and Mi denotes the mass
of the charged (W±) or neutral (Z0) gauge boson.

In the QCD improved parton model the structure func-
tions F2,3(x,Q2) are expressed in terms of the (scale de-
pendent) quark and antiquark distributions [23]. Thus for
the isoscalar target N = n+p

2 we have

FCC
2 (x,Q2) = x[uv(x,Q2) + dv(x,Q2)] (3)

+ 2x[ū(x,Q2) + d̄(x,Q2) + s(x,Q2) + c(x,Q2)],

FCC
3 (x,Q2) = uv(x,Q2) + dv(x,Q2), (4)

FNC
2 (x,Q2) =

(L2
u + L2

d +R2
u +R2

d)
4

× {[uv(x,Q2) + dv(x,Q2)] (5)
+2x[ū(x,Q2) + d̄(x,Q2) + s(x,Q2) + c(x,Q2)]},

FCC
3 (x,Q2) (6)

=
(L2

u + L2
d −R2

u −R2
d)

4
[uv(x,Q2) + dv],

where the chiral couplings can be expressed in terms of
the Weinberg angle θW

Lu = 1 − 4
3

sin2 θW,

Ld = −1 +
2
3

sin2 θW,

Ru = −4
3

sin2 θW,

Rd =
2
3

sin2 θW. (7)

The quantities which are relevant for the quantitative
description of the penetration of ultra-high energy neutri-
nos through Earth and for their detection are the neutrino
cross-sections integrated over available phase space at the
given neutrino energy. These integrated cross-section are
given by

σCC,NC
ν,ν̄ (E) =

∫ s

Q2
min

dQ2
∫ 1

Q2/s

dx
1
xs

∂2σCC,NC
ν,ν̄

∂x∂y
, (8)

with y = Q2/(xs). In (8) we have introduced the minimal
value Q2

min of Q2 in order to stay in the deep inelastic
region. In our calculations we set Q2

min = 1 GeV2. In the
“low” energy region s < M2

i the integrated cross-sections
increases linearly with E and in this region the interaction
with valence quarks dominates. In the high energy region
the contribution of valence quarks saturates and the en-
ergy dependence of σCC,NC

ν,ν̄ (E) is driven by the small x
behavior of the sea quark distributions [3]. It is this part
of the cross-sections which will be analyzed in our paper.

Existing numerical estimates of the ultra-high energy
cross-sections are based upon extrapolation of the par-
ton distributions towards the very small x region using
linear (DGLAP and/or BFKL) QCD evolution equations
[2–4]. At small x the dominant partons are the gluons,
and the sea quark distributions are driven by the gluons
through the g → qq̄ transitions. The linear QCD evo-
lution generates an indefinite increase of gluon distribu-
tions with decreasing x, which implies a similar increase of
the sea quark distributions and of the structure functions
FCC,NC

2 (x,Q2) and FCC,NC
L (x,Q2). This increase is tamed

by the non-linear screening effects which lead to saturation
[7–13]. An efficient way of introducing saturation can be
realized using the color dipole framework in which the DIS
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Fig. 2. Schematic representation of the dipole picture [19]

at low x is viewed as the result of the interaction of the
color qq̄ dipole which the gauge bosons fluctuate to as il-
lustrated in Fig. 2. A very succesful semi-phenomenolgical
analysis of ep DIS at low x has been performed within
this framework by Golec-Biernat and Wüsthoff [19] and
in the next section we apply this model to the estimate
of the saturation effects in the ultra-high energy neutrino
cross-sections.

3 DIS in the dipole picture
and ultra-high energy neutrino interactions

The DIS structure functions in the dipole picture can be
written in the following form [19]:

FCC,NC
T,L (x,Q2) =

Q2

4π2

∫
d2r

∫ 1

0
dz|ψ̄W,Z

T,L (r, z,Q2)|2σd(r, x). (9)

In this equation r denotes the transverse size of the qq̄
dipole, z the longitudinal momentum fraction carried by a
quark and the ψ̄W,Z

T,L (r, z,Q2) are proportional to the wave
functions of the (virtual) charged or neutral gauge bosons
corresponding to their transverse or longitudinal polariza-
tion (FCC,NC

T (x,Q2) = FCC,NC
2 (x,Q2) − FCC,NC

L (x,Q2)).
Explicit expressions for ψ̄W,Z

T,L (r, z,Q2) are given below.
The cross-section σd(r, x) describes the interaction of the
color qq̄ dipole with the nucleon. In the GBW model
σd(r, x) has the following form:

σd(r, x) = σ0

[
1 − exp

(
− r2

4R2
0(x)

)]
. (10)

The most crucial element in this model is the adoption of
the x-dependent saturation radius R0(x) which scales the
qq̄ separation in the dipole cross-section. The saturation
radius is a decreasing function with decreasing x and is
parameterized as below:

R2
0(x) =

1
Q2

0

(
x

x0

)λ

, (11)

with Q2
0 = 1 GeV2. The three parameters of the model

σ0, λ and x0 were fitted to inclusive DIS data from HERA
for x < 0.01. We shall use the following values: σ0 =
29.12 mb, λ = 0.2777 and x0 = 0.41 × 10−4, which were
obtained from the fit with four flavors.

In the limit r → ∞ we have σd → σ0, i.e. the dipole
cross-section exhibits the saturation property. The fact
that the dipole cross-section is limited by the energy in-
dependent cross-section can be regarded as the unitarity
bound. In the limit r → 0 the dipole cross-section van-
ishes, reflecting the color transparency.

The GBW model, which has proved to be phenomeno-
logically very succesful in describing HERA data and has
embodied saturation can be used for the estimate of the
UHE neutrino cross-sections. In our calculation of the
UHE neutrino–nucleon cross-section we consider only four
flavors (u, d, s, c). The corresponding qq̄ dipoles which con-
tribute to Cabibbo favored transitions are ud̄ (dū), cs̄ (sc̄)
for charged currents and uū, dd̄, cc̄, ss̄ for neutral currents
respectively. In our calculations we shall assume massless
quarks. This approximation is reasonable for very high
energy neutrinos. A possible contribution of the heavy
quarks (b, t), where the mass parameters cannot be ne-
glected, is found to be relatively small [3].

The dipole model describes well deep inelastic scatter-
ing at small x, but it becomes inaccurate at large and mod-
erately small values of x. This is closely linked with the
fact that it neglects theoretical expectations concerning
the behavior of the quark distributions in the x → 1 limit.
This effect can be approximately taken into account by
multiplying the structure functions by a factor (1−x)2ns−1

which follows from the constitutent counting rule where ns
denotes the number of spectator quarks. Since the dipole
model represents the sea quark contribution we set ns = 4.

The functions ψ̄W,Z
T,L (r, z,Q2) corresponding to the sum

over dipoles corresponding to massless quarks are given by
the following formulas:

|ψ̄W
T (r, z,Q2)|2 =

6
π2 [z2 + (1 − z)2]Q̄2K2

1 (Q̄r), (12)

|ψ̄W
L (r, z,Q2)|2 =

24
π2 z

2(1 − z)2Q2K2
0 (Q̄r), (13)

|ψ̄Z
T(r, z,Q2)|2 (14)

=
3

2π2 (L2
u + L2

d +R2
u +R2

d)[z
2 + (1 − z)2]Q̄2K2

1 (Q̄r),

|ψ̄Z
L (r, z,Q2)|2

=
6
π2 (L2

u + L2
d +R2

u +R2
d)z

2(1 − z)2Q2K2
0 (Q̄r), (15)

where
Q̄2 = z(1 − z)Q2, (16)

and K0,1(u) are the McDonald’s functions.
In Figs. 3 and 4 we show results for the ultra-high neu-

trino cross-sections calculated within the GBW saturation
model and confront them with the estimate based upon
the unified BFKL/DGLAP framework which ignored sat-
uration effects [3]. We can see that the cross-sections cal-
culated within the GBW model are at ultra-high energies,
E ∼ 1012 GeV, about a factor two smaller than those
which were estimated within the scheme incorporating
BFKL and DGLAP evolution without screening correc-
tions.

It should however be remembered that the GBW
model has been tested phenomenologically for relatively
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Fig. 3. The prediction for the neutrino–nucleon CC cross-
section obtained from the GBW saturation model. For com-
parison we also show results based on the (linear) unified
BFKL/DGLAP evolution
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Fig. 4. As for Fig. 2, but for the NC interactions

low values of Q2 and that it requires corrections incorpo-
rating DGLAP evolution [21]. It is therefore necessary to
perform an estimate of the neutrino cross-sections within
the scheme that would include saturation effects together
with complete QCD evolution as will be described in the
next section.

4 Unified BFKL/DGLAP evolution
with non-linear screening effects
and ultra-high neutrino cross-sections

We have shown in the previous section that the ultra-high
energy neutrino cross-sections based upon the GBW sat-
uration model are at very high neutrino energies (E >
1012 GeV) about a factor two smaller than those calcu-
lated from the linear QCD evolution equations. It can
however be expected that part of this reduction may just
be caused by the fact that the GBW model does not cor-
rectly include the QCD evolution effects [21]. Let us re-
call that the dominant contribution to the neutrino cross-

sections comes from the region Q2 ∼ M2
W , where the

simple GBW model may not be sufficiently accurate. It
would therefore be desirable to discuss the ultra-high en-
ergy cross-sections within the framework which contains
both the QCD evolution effects and saturation. It is also
of course very important that this framework should be
based upon realistic parton distributions constrained by
HERA data. The framework should also contain all the
QCD expectations concerning the small x behavior which
follow from the BFKL dynamics as discussed, for instance,
in [20]. We shall therefore use the scheme developed in
[20] containing the unified BFKL/DGLAP dynamics with
subleading BFKL effects taken into account and supple-
ment it by the screening contributions for the gluon dis-
tributions. To be precise we shall include the non-linear
screening term in the corresponding equation for the unin-
tegrated gluon distribution f(x, k2), where k2 is the trans-
verse momentum squared of the gluon [20]. The struc-
ture functions are then calculated from the unintegrated
gluon distributions using the kt factorization prescription
[25]. The extended system of the evolution equations with
screening effects included then reads

f(x, k2) = f̃ (0) (
x, k2)

+ 2Nc

αs
(
k2

)
2π

k2
∫ 1

x

dz
z

∫
k2
0

dk′2

k′2

×


f

(
x
z , k

′2)Θ (
k2

z − k′2
)

− f
(

x
z , k

2
)

|k′2 − k2|

+
f

(
x
z , k

2
)

[4k′4 + k4]
1
2




+
αs

(
k2

)
2π

∫ 1

x

dz
z

×
[
(zPgg(z) − 2Nc)

∫ k2

k2
0

dk′2

k′2 f
(x
z
, k′2

)

+ zPgq(z)Σ
(x
z
, k2

) ]

−
(

1 − k2 d
dk2

)2
k2

R2

∫ 1

x

dz
z

×
[∫ ∞

k2

dk′2

k′4 αs(k′2) ln
(
k′2

k2

)
f

(
z, k′2)]2

. (17)

The first seven lines in (17) describe the linear unified
BFKL/DGLAP evolution [20]. Thus the second, third and
fourth lines of this equation correspond to the BFKL evo-
lution [7,26]. The constraint Θ

(
k2

z − k′2
)

reflects the so-
called consistency constraint [27] which generates a domi-
nant part of the subleading BFKL corrections [28,29]. The
two terms in the fifth, sixth and seventh line in (17) cor-
respond to the DGLAP effects generated by that part of
the splitting function Pgg(z) which is not singular in the
limit z → 0 and by the quarks respectively, with Σ(x, k2)
corresponding to the singlet quark distributions
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Σ(x, k2) =
∑

q=u,d,s

(q + q̄) + c+ c̄

= V (x, k2) + Suds + Sc, (18)

where V, Suds and Sc denote the valence, the light sea
quark and the charmed quark distributions respectively.
The inhomogeneous term f̃ (0)(x, k2) is defined in terms of
the input (integrated) gluon distribution:

f̃ (0)(x, k2) =
αs(k2)

2π

∫ 1

x

dzPgg(z)
x

z
g

(x
z
, k2

0

)
. (19)

The non-linear screening contribution is given by the
last term in (17), where R denotes the radius within which
the gluons are expected to be concentrated. The structure
of this contribution follows from the Balitzki–Kovchegov
equation [12,13] adapted to the unintegrated gluon distri-
bution f(x, k2) [24] and the details concerning the struc-
ture of this term are briefly discussed in Appendix A. The
sea quark distributions which describe the structure func-
tions are calculated from the unintegrated gluon distribu-
tions using kt factorization.

Unlike the case of the leading ln(1/x) approximation,
(17) cannot be reduced to the evolution equation in
ln(1/x) that makes its numerical analysis rather cumber-
some. This complication comes from the fact that the sub-
leading BFKL effects and the non-singular DGLAP con-
tribution introduce a non-trivial z-dependence of the ker-
nel. We have however observed that at small x the linear
version of (17) can be very well approximated by an (ef-
fective) evolution equation in ln(1/x) with the boundary
condition provided at some moderately small value of x
(i.e. x = x0 ∼ 0.01). The latter is obtained from the solu-
tion of the linear version of (17) in the region x > x0. To
be precise we have observed that at small x we can make
the following approximations.
(1) The consistency constraint Θ(k2/z−k′2) of the BFKL
kernel responsible for the subleading BFKL effects is re-
placed by the following effective (z-independent) term:

Θ(k2/z−k′2) → Θ(k2−k′2)+
(
k2

k′2

)ωeff

Θ(k′2−k2). (20)

This replacement is motivated by the structure of the con-
sistency constraint in the moment space, i.e.

ω

∫ 1

0

dz
z
zωΘ(k2/z − k′2)

= Θ(k2 − k′2) +
(
k2

k′2

)ω

Θ(k′2 − k2). (21)

(2) We make the following replacement:∫ 1

x

dz
z

[zPgg(z) − 2Nc]f
(x
z
, k′2

)
→ P̄gg(ω = 0)f(x, k′2), (22)

where P̄gg(ω) is a moment function of zPgg(z) − 2Nc, i.e.

P̄gg(ω) =
∫ 1

0

dz
z
zω[(zPgg(z) − 2Nc]. (23)

This approximation corresponds to keeping the leading
term in the expansion of P̄gg(ω) around ω = 0, which is a
standard approximation at low x [30].
(3) We neglect the quark contribution in the right hand
side of (17).

Using these approximations, (17) can be rearranged
into the following form:

∂f(x, k2)
∂ ln(1/x)

= Keff
L ⊗ f

−
∫ ∞

k2
0

dk′′2KS(k2, k′′2)
(

1 − k′′2 d
dk′′2

)2 (
k′′2

R2

)
,

×
[∫ ∞

k′′2

dk′2

k′4 ln
(
k′2

k′′2

)
αs(k′2)f(x, k′2)

]2

, (24)

where

Keff
L ⊗ f = 2Nc

αs(k2)
2π

∫ ∞

k2
0

dk′′2

×
{
δ(k2 − k′′2) +Θ(k2 − k′′2)P̄gg(0)

αs(k′′2)
2π

× exp
[
P̄gg(0)(ξ(k2) − ξ(k′′2)

]}
×k′′2

∫ ∞

k2
0

dk′2

k′2

×
{

f(x,k′2)
[
Θ(k′′2−k′2)+

(
k′′2
k′2

)ωeff
Θ(k′2−k′′2)

]
−f(x,k′′2)

|k′2−k′′2|

+
f(x, k′′2)

[4k′4 + k′′4]
1
2

}
, (25)

KS(k2, k′′2) = δ(k2 − k′′2)

+Θ(k2 − k′′2)P̄gg(0)
αs(k′′2)

2π
× exp

[
P̄gg(0)(ξ(k2) − ξ(k′′2)

]
. (26)

and

ξ(k2) =
∫ k2

k2
0

dk′2

k′2
αs(k′2)

2π
. (27)

Following [20] we set k2
0 = 1 GeV2. The method of the

solution of (24) is described in Appendix B.
At first we solved the linear version of (24) with the

non-linear term neglected starting from the initial condi-
tions at x = 10−2 obtained from the solution of the exact
equation. The parameter ωeff was then obtained by fitting
the solution of the linear version of the approximate equa-
tion (24) to the solution of the linear version of the exact
equation (17) of the unified BFKL/DGLAP framework.
This procedure gives ωeff = 0.2. It turns out that the so-
lution of the linear version of the approximate equation
(24) reproduces the solution of the linear version of (17)
within 3% accuracy in the region 10−2 > x > 10−8 and
2 GeV2 < k2 < 106 GeV2 ).

We next solved the non-linear equation (24) setting
R = 4 GeV−1. The quark distributions defining the struc-
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ture functions FCC,NC
2,L were calculated from the kt factor-

ization [3,20]

2xq(x,Q2) =∫
dk2

k2

∫ aq(k2)

x

dz
z
Sbox

q (z, k2, Q2)f
(x
z
, k2

)
, (28)

where the impact factors corresponding to the quark box
contributions to the gluon–boson fusion process are the
same as those used in [20] (see also [31]), i.e.,

Sbox
q (z, k2, Q2) =

Q2

4π2k2

∫ 1

0
dβd2κ′αsδ(z − z0)

×
{

[β2 + (1 − β)2]
(

κ

D1q
− κ − k

D2q

)2

(29)

+ [m2
q + 4Q2β2(1 − β)2

(
1
D1q

− 1
D2q

)2
}
,

where κ′ = κ − (1 − β)k and

D1q = κ2 + β(1 − β)Q2 +m2
q,

D1q = (κ− k)2 + β(1 − β)Q2 +m2
q,

z0 =

[
1 +

κ′2 +m2
q

β(1 − β)Q2 +
k2

Q2

]−1

. (30)

To be precise in the calculation of the (effective) quark
distributions appearing in the charged current structure
function we use the impact factors (29) corresponding to
the massless quarks, and the (charmed) quark mass effects
are included in the threshold factors:

ac,s(k2) =
(

1 +
k2 +m2

c

Q2

)−1

. (31)

The kt factorization formulas (28) and (29) contain sub-
leading ln(1/x) effects coming from the exact kinematics
of the gluon–boson fusion process [32]. Complete NLO cor-
rections to the impact factors are discussed in [33]. In the
impact factors corresponding to the neutral currents we
use (29) with mu = md = ms = 0 and mc = 1.4 GeV.
We also include non-perturbative contributions accord-
ing to the prescription defined in [20]. The valence quark
distributions were taken from [22]. In Figs. 5 and 6 we
show the results of our calculation for σCC ≡ σCC

ν (E) and
σNC ≡ σNC

ν (E) with and without screening corrections
included and confront them with our previous estimate
based upon the GBW model.

We can see that at ultra-high energies the cross-sec-
tions calculated within the unified BFKL/DGLAP frame-
work supplemented by screening effects are larger than
those calculated from the simple GBW model. The re-
sulting cross-sections are still appreciably smaller than the
cross-sections calculated within the linear BFKL/DGLAP
framework with the screening effects neglected.

A reduction of the magnitude of the neutrino cross-
section is a consequence of the fact that the non-linear
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Fig. 5. The prediction for the neutrino–nucleon CC cross-sec-
tion obtained from the unified BFKL/DGLAP equation sup-
plemented by screening effects. For comparison we also present
results based on the GBW saturation model and the linear uni-
fied BFKL/DGLAP evolutions
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Fig. 6. As for Fig. 5, but for the NC interactions

screening effects slow down the increase of the structure
functions with decreasing x. In Fig. 7 we show the charged
current structure function FCC

2 (x,Q2) plotted as a func-
tion of x at Q2 = M2

W with and without screening cor-
rections included. We can see that the screening effects
reduce the magnitude of FCC

2 (x,Q2 = M2
W ) at x = 10−8

by almost a factor equal to two.
The screening effects in structure functions are gener-

ated through kt factorization by the screening effects in
the unintegrated gluon distribution f(x, k2) which satis-
fies the non-linear equation (24). The non-linear screening
corrections generate the critical line Q2

c(x) which increases
with decreasing x which divides the k2, x plane into two
regions.

In the region k2 < Q2
c(x) the unintegrated gluon dis-

tribution saturates, i.e. f(k2, x) ∼ R2k2h(x, k2), where
h(x, k2) is a slowly varying function of x and k2. In this
region the unintegrated gluon distribution becomes much
smaller than the solution fl(k2, x) of the linear version
of (24), which behaves approximately as fl(k2, x) ∼ x−λ



K. Kutak, J. Kwieciński: Screening effects in the ultra-high energy neutrino interactions 527

1e-08 1e-07 1e-06 1e-05 0.0001 0.001
x

0

100

200

300

400

500

600
 F

2C
C
(x

,Q
2 =

M
W

2 )

Unified BFKL/DGLAP+screening
Unified BFKL/DGLAP

Fig. 7. The FCC
2 (x, Q2)structure function obtained from the

unified BFKL/DGLAP equation supplemented by screening
efects compared to results based on the linear BFKL/DGLAP
evolution. The function FCC

2 (x, Q2) is plotted as a function of
x for Q2 = M2

W

with λ ∼ 0.3 over the entire region of k2 [3,20]. In the re-
gion k2 > Q2

c(x) the non-linear screening contribution on
the right hand side of (24) becomes less important than
the linear term and can be neglected for k2 >> Q2

c(x).
The magnitude of the unintegrated distribution continues
to be significantly smaller than fl(x, k2) over a substantial
range of k2. To be precise we have f(k2, x) ∼ f(Q2

c(x), x)
with f(Q2

c(x), x) < fl(k2, x) in the region

Q̃2(x) > k2 > Q2
c(x), (32)

where Q̃2(x) = Q4
c(x)/Λ

2
QCD [34] 1. It should be noted

that Q̃2(x) >> Q2
c(x). The screening effects do there-

fore significantly reduce the corresponding contribution to
the kt factorization integrals (28) coming from the region
k2
0 < k2 < Q̃2(x). The integral over this region gives of

course part of the leading twist contribution to the struc-
ture functions FCC,NC

2 (x,Q2), which does not vanish at
large Q2. This result, that the screening effects for the
structure function F2 are appreciable even at such a large
value, Q2 ∼ M2

W , comes therefore from the fact that the
screening effects contribute to the leading twist part of
FCC,NC

2 (x,Q2).
The fact that the screening effects at FCC,NC

2 (x,Q2)
can be important at Q2 ∼ M2

W and very small x (x ∼
10−8) implies that they may in turn have a non-negligible
influence on the ultra-high energy neutrino cross-sections.
It is this fact which makes our results significantly differ-
ent from those presented in [16,17] where the saturation
effects were confined to the modification of the structure
functions in the saturation region Q2 < Q2

c(x) only. The
1 The condition (32) has a simple origin. It comes from the

fact that possible scaling violations in the region k2 > Q2
c(x)

which modify the boundary condition provided along the crit-
ical line Q2

c(x) are approximately controlled by the “evolution
length” ξ̃(k2, x) ∼ αs(Q2

c(x)) ln(k2/Q2
c(x)). The condition (32)

is equivalent to the requirement ξ̃(k2, x) << 1
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Fig. 8. The comparison of the FCC
2 structure function calcu-

lated for Q2 = M2
W obtained from the unified BFKL/DGLAP

evolution, extended BFKL evolution and LO BFKL evolution.
Extended BFKL evolution corresponds to the BFKL equation
with subleading effects generated by the consistency constraint
but without the DGLAP effects

corresponding contribution to the UHE neutrino cross-
section coming from the integral over this region in (8) is
very small and so modifications of the structure functions
in the saturation region alone have a negligible impact on
the UHE cross-sections [16,17].

The fact that the cross-sections are sensitive to the be-
havior at very small x and large scales Q2 ∼ M2

W implies
that the effects which are formally subleading in ln(1/x)
but can significantly affect both the ln(1/x) and the Q2

evolution cannot be neglected. We illustrate this point
in Fig. 8, where we show FCC

2 (x,Q2) for Q2 = M2
W cal-

culated within three approximations: the leading ln(1/x)
BFKL framework, the extended BFKL framework which
includes the subleading ln(1/x) effects generated by the
consistency constraint and the unified BFKL/DGLAP
scheme which includes besides the BFKL dynamics with
subleading effects also the complete DGLAP evolution.

The latter two frameworks contain effects which are
subleading at low x. For simplicity of the presentation the
non-linear screening effects are neglected in all three cases.
We can see that both subleading ln(1/x) effects play a very
important role and significantly reduce the magnitude of
the structure function at large scale Q2 ∼ M2

W and very
small values of x ∼ 10−8. Including these effects together
with the screening contribution is therefore important for
getting a reliable extrapolation of the structure functions
into the region of very small values of x and large scales.

The discussion of the cross-sections performed so far
concerned the screening effects on a nucleon target. In
the case of neutrino–nucleus inelastic scattering a further
reduction of the magnitude of the total neutrino cross-sec-
tions due to nuclear shadowing is expected [36]. In order
to perform an indicative estimate of the possible nuclear
shadowing effects for different values of the atomic num-
bers A we just modify the strength of the non-linear term
in (17) by a factor A1/3. In Fig. 9 we show our results for
the normalized neutrino–nucleus cross-sections for differ-
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Fig. 9. The prediction for the neutrino–nucleus CC cross-sec-
tion obtained from the unified BFKL/DGLAP equation sup-
plemented by screening effects. The cross section is calculated
for different atomic numbers and is normalized to the nucleon.
For comparison we also present results for the neutrino–nucleon
CC cross-section based on the (linear) unified BFKL/DGLAP
evolution

ent values of the atomic number A varying from A = 12
to A = 207.

For comparison we show results for the neutrino–
nucleon cross-section with and without screening effects.
We see from this figure that nuclear shadowing can lead
to a further reduction of the cross-section.

5 Summary and conclusions

In this paper we have performed an analysis of possible im-
plications of the screening effects on the extrapolation of
the neutrino–nucleon cross-sections towards the ultra-high
energy region. The behavior of the cross-sections in this
region probes the structure functions at very small values
of x and relatively large scales Q2 ∼ M2

W,Z . The values of
x which can be probed can be as small as 10−8 and it may
be expected that the parton densities in this ultra-small
x region should be affected by non-linear screening effects
which tame the indefinite increase of the parton distribu-
tions generated by a linear (BFKL and/or DGLAP) QCD
evolution. At first we have performed an estimate of the
total neutrino–nucleon cross-sections within the Golec-
Biernat–Wüsthoff saturation model. In this model deep
inelastic lepton scattering is viewed as the result of the
interaction of the color qq̄ dipoles which the gauge boson
fluctuates to. An important ingredient of the model is the
fact that it incorporates the saturation property of the
total dipole–nucleon proton cross-section at large trans-
verse separations between the constituents of the dipole.
We have found that the neutrino total cross-sections ob-
tained within this model are at ultra-high neutrino ener-
gies significantly smaller than those estimated from the
linear BFKL/DGLAP evolution which neglects screening
effects. We have observed however that part of this reduc-
tion might have been caused by the fact that the GBW

model did not include the QCD evolution effects, and so it
was not sufficiently accurate at very small values of x and
large values of the scale Q2 ∼ M2

W,Z . In order to overcome
this potential deficiency of the GBW model we have per-
formed an estimate of the cross-section within the more
elaborate framework based on the unified BFKL/DGLAP
scheme supplemented by the non-linear screening effects.
Contrary to the simple GBW model this framework con-
tained the complete BFKL and DGLAP evolution, includ-
ing the subleading BFKL contributions. We have shown
that all these effects are important in the region of very
small values of x and large scales, which is relevant for the
interactions of ultra-high energy neutrinos. The non-linear
screening effects were still found to reduce appreciably the
neutrino cross-sections at ultra-high energies; yet their ef-
fects turn out to be milder than in the case of the simple
GBW model. We have also presented a very approximate
estimate of the nuclear shadowing effects on further re-
duction of the cross-sections.

To summarize we have shown that the screening effects
may play a non-negligible role in the extrapolation of the
neutrino cross-sections towards ultra-high energies.
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Appendix A

In this appendix we derive the non-linear shadowing term
on the right hand side of (24) starting from the Balitzki–
Kovchegov equation. The basic quantity within this frame-
work is the number of the color dipoles N(r,b, x) in a
nucleon, where r denotes the transverse size of the dipole
and b is the impact parameter. The quantity N(r,b, x) is
closely related to the total cross-section σ(r, x) describing
the interaction of the qq̄ color dipole of transverse size r
with a nucleon,

σ(r, x) = 2
∫

d2bN(r,b, x). (33)

The dipole cross-section is related to the unintegrated
gluon distribution f(x, k2) [35]:

σ(r, x) =
8π2

Nc

∫
dk
k3 [1 − J0(kr)]αsf(x, k2). (34)

For simplicity we regard αs as a fixed parameter and will
put its argument at the end. It is convenient to introduce
the functions Ñ(l,b, x) and ñ(l, x) defined as below:

Ñ(l,b, x) =
∫

d2r
2πr2

exp[ilr]N(r,b, x), (35)

ñ(l, x) =
∫

d2bÑ(l,b, x). (36)

From (33), (34), (35) and (36) we get
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ñ(l, x) =
π2

Nc

∫ ∞

l2

dk2

k4 ln
(
k2

l2

)
αsf(x, k2), (37)

where we have used the following relation:∫ ∞

0

dr
r
J0(lr)[1 − J0(kr)] = Θ(k2 − l2) ln

(
k

l

)
. (38)

Equation (37) implies the following local relation between
ñ(l, x) and f(x, l2):

(
1 − l2

d
dl2

)2

l2n(l, x) =
αsπ

2

Nc
f(x, l2). (39)

In the large Nc limit the function N(r,b, x) satisfies the
Balitzki–Kovchegov equation [12,13]:

N(r01,b, x) = N0(r01,b, x)

+
αsNc

2π

∫ 1

x

dz
z

{
−2 ln

r201
ρ2 N(r01,b, z)

×
∫ ∞

ρ

d2r2

π

r201
r202r

2
12

[
2N

(
r02,b +

1
2
r12, z

)
(40)

− N

(
r02,b +

1
2
r12, z

)
N

(
r12,b − 1

2
r20, z

)]}
.

The term linear in N on the right hand side of (40)
corresponds to the right hand side of the BFKL equa-
tion (in transverse coordinate space) in the leading ln(1/x)
approximation and the non-linear term describes screen-
ing effects. Taking the Fourier–Bessel transform of both
sides of (40), integrating over d2b using the approxima-
tion b >> 1/2r20 and b >> 1/2r10 in the non-linear term
and assuming the following factorization:

Ñ2(l,b, z) = ñ(l, x)S(b), (41)

with ∫
d2bS(b) = 1, (42)

we get

l2ñ(l, x) (43)

= l2ñ0(l2, x) +
Ncαs

π

∫ 1

x

dz
z

[
K ⊗ l2ñ− 1

πR2 l
2ñ2(l, z)

]
,

where
1

πR2 =
∫

d2bS2(b). (44)

The kernel K in (43) is the LO BFKL kernel. Using (37)
and (39) we transform (43) into an equation for the unin-
tegrated gluon distribution:

f(x, k2) = f0(x, k2)

+
∫ 1

x

dz
z

{
Ncαs

π
K ⊗ f −

(
1 − k2 d

dk2

)2 (
k2

R2

)

×
[∫ ∞

k2

dk′2

k′4 αs(k′2) ln
(
k′2

k2

)
f(z, k′2)

]2
}
, (45)

where following [21] we set the argument of αs equal to k′2
in the non-linear term. Finally supplementing the linear
evolution by the subleading BFKL effects generated by
the consistency constraint and the DGLAP contributions
resulting from the non-singular parts of the Pgg splitting
function and quarks, we get (17). Following [20] we set the
argument of αs in the linear term equal to k2.

Appendix B

In order to solve (24) we use the Tchebyshev interpolation
formula:

f(x, k2) =
2
N

N−1∑
n,i=0

vnTn(τi)Tn(τk2)f(x, k2
i ), (46)

where the Tn(z) are the Tchebyshev polynomials, v0 =
1/2 and vn = 1 for n > 0. The variables τk2 , τi and k2

i are
defined as

τk2 =
ln

(
k2

kmaxk0

)
ln

(
kmax
k0

) , (47)

τi = cos
(

2i+ 1
2N

π

)
, (48)

k2
i = kmaxk0

(
kmax

k0

)τi

, (49)

where we set k2
0 = 1 GeV2, k2

max = 106 GeV2. Combining
the Tchebyshev interpolation formula (46) with (24) we
reduce this equation to a system of the non-linear differ-
ential equations for the functions f(x, k2

i ). This system is
solved using the standard Runge–Kutta method and the
function f(x, k2) calculated from (46) for arbitrary val-
ues of k2 in the region k2

0 < k2 < k2
max. In the region

k2 > k2
max, which gives a negligible contribution anyway,

we approximate the function f(x, k2) by f(x, k2
max).
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